A Diffusion Model in Population Genetics with Mutation and Dynamic Fitness

Mike O'Leary

Department of Mathematics Towson University

World Conference on Nonlinear Analysis Orlando, FL July 2008

The Problem

- **The question:** What is the behavior of a quantitative polygenic trait under selection, drift, and mutation?
 - Can we determine the long-time behavior of the trait mean?
 - Can we determine the long-time behavior of the total genetic variance?
- Portions of this work are joint with Judith Miller, Georgetown University.

- Consider a single haploid panmictic population of constant size N_{pop} with n_{loci} diallelic loci.
- Suppose that the two alleles at locus $i \in \{1, \ldots, n_{\text{loci}}\}$ are A_i and $a_i.$
- The effect of allele A_i is greater than the effect of allele a_i.
- We assume that the difference in phenotype between A_i and a_i is Q, and that this is constant across loci.
- We assume strict additivity, so that dominance and epistasis are absent.

- Let the fraction of the population with allele A_i at locus i be denoted by x_i.
- The population phenotypic mean is then

$$m = \sum_{i=1}^{n_{\text{loci}}} \left[x_i(\frac{1}{2}Q) + (1-x_i)(-\frac{1}{2}Q) \right] = \sum_{i=1}^{n_{\text{loci}}} \left(x_i - \frac{1}{2} \right) Q$$

up to a constant.

 We assume that the environment has a most fit phenotype r_{opt}, and that there is a fitness function of the form

$$f(\mathbf{r}) = e^{-\kappa (\mathbf{r} - \mathbf{r}_{opt})^2}$$

which gives the relative fitness of a phenotype r.

- What is the probability p_i that an individual in the next generation will contain allele A_i?
 - Clearly, $p_i \propto x_i.$
 - In addition, p_i is proportional to the average fitness of the population that carries A_i.
- $\bullet\,$ The average phenotype m_i^+ of the population that carries the allele A_i is

$$\mathfrak{m}_{\mathfrak{i}}^{+} = \sum_{\mathfrak{j} \neq \mathfrak{i}} \left(x_{\mathfrak{i}} - \frac{\mathfrak{1}}{2} \right) Q + \frac{\mathfrak{1}}{2}Q = \mathfrak{m} + (\mathfrak{1} - x_{\mathfrak{i}})Q,$$

• The average phenotype m_i^- of the population that carries the allele a_i is ____

$$\mathfrak{m}_{\mathfrak{i}}^{-} = \sum_{\mathfrak{j} \neq \mathfrak{i}} \left(\mathfrak{x}_{\mathfrak{i}} - \frac{\mathfrak{1}}{2} \right) Q - \frac{\mathfrak{1}}{2}Q = \mathfrak{m} - Q\mathfrak{x}_{\mathfrak{i}}.$$

- Assume that alleles at locus i are independent of alleles at locus j (gametic phase equilibrium); then $p_i \propto f(m_i^+)$.
- Because the population size is fixed at N_{pop} , we then know $(1-p_i)\propto (1-x_i)$ and $(1-p_i)\propto f(m_i^-).$
- As a consequence

$$p_{i} = \frac{x_{i}f(m_{i}^{+})}{x_{i}f(m_{i}^{+}) + (1 - x_{i})f(m_{i}^{-})}$$

=
$$\frac{x_{i}f(m + (1 - x_{i})Q)}{x_{i}f(m + (1 - x_{i})Q) + (1 - x_{i})f(m - x_{i}Q)}.$$

- Let φ(x, t) be the number of loci with allele frequency x after t generations.
- Then the population phenotypic mean after t generations can be written as

$$\mathfrak{m}(\mathfrak{t}) = \sum_{\mathfrak{x}} Q(\mathfrak{x} - \frac{1}{2}) \varphi(\mathfrak{x}, \mathfrak{t}).$$

- We are indexing loci by allele fequency rather than by arbitrary integers.
- φ(0, t) gives the number of loci with allele frequency zero, so the A allele no longer appears in the population.
- φ(1, t) gives the number of loci with allele frequency one, so the a allele no longer appears in the population.

• We scale the variables, and pass to the limits $n_{\text{loci}} \to \infty$, and $N_{\text{pop}} \to \infty$, and as time becomes continuous.

The Continuous Model

• We obtain the partial differential equation for ϕ ,

$$\phi_t = -[x(1-x)\mathfrak{m}(t)\phi]_x + \frac{1}{2}[x(1-x)\phi]_{xx}$$

where

$$\mathfrak{m}(\mathfrak{t})=\kappa(\rho-R(\mathfrak{t}));$$

 Here ρ is rescaled optimal trait mean, κ is a rescaled strength of selection and R(t) is the trait mean, given by

$$R(t) = \int_0^1 (x - \frac{1}{2})\phi(x, t) \, dx + R_0(t) + R_1(t)$$

where

$$\begin{split} R_0'(t) &= \frac{1}{2} \left[-\frac{1}{2} [x(1-x)\varphi]_x \right]_{x=0^+}, \\ R_1'(t) &= \frac{1}{2} \left[-\frac{1}{2} [x(1-x)\varphi]_x \right]_{x=1^-}. \end{split}$$

Mike O'Leary (Towson University)

Mutation-Hypotheses

- Selection precedes mutation in every generation
- There is a probability μ that allele A_i becomes allele a_i or vice-versa for each locus i and for each generation.

The Model with Mutation

• Then

$$\varphi_t = -[x(1-x)\mathfrak{m}(t)\varphi]_x - [\mu(1-2x)\varphi]_x + \frac{1}{2}[x(1-x)\varphi]_{xx}$$

where

$$\begin{split} m(t) &= \kappa(\rho - R(t)) \\ R(t) &= \int_0^1 (x - \frac{1}{2}) \varphi(x, t) \ dx + R_0(t) + R_1(t) \\ R_0'(t) &= \frac{1}{2} \left[+\mu \varphi - \frac{1}{2} [x(1 - x)\varphi]_x \right]_{x=0^+} \\ R_1'(t) &= \frac{1}{2} \left[-\mu \varphi - \frac{1}{2} [x(1 - x)\varphi]_x \right]_{x=1^-}. \end{split}$$

Features of the Problem

- $\bullet\,$ The problem is highly nonlinear, as m(t) depends on the solution $\varphi.$
- The problem is nonlocal, as some of this dependence is via an integral of the solution ϕ .
- Though the equation appears to be a non-uniformly parabolic equation, note that it has no boundary conditions.
- The behavior of the solutions at the boundaries are incorporated into the coefficients and the nonlinearity of the problem.
- The mutation term behaves like a leading-order term, not a lower order term.

Main Results

- If the mutation rate μ is sufficiently small ($\mu < 0.10$ will do) then the problem has a solution.
- The solution is unique and stable under perturbations of the initial data.
- In the case without mutation, we also have:
 - The scaled genetic variance $S^2(t)=\int_0^1 x(1-x)\varphi(x,t)\ dx$ tends weakly to zero as $t\to\infty.$
 - We have $R(t)-\rho=(R(0)-\rho)\,\text{exp}\int_0^t-\kappa\,S^2(\tau)\;d\tau$
 - If the initial trait mean is sufficently close to optimal, then $S^2(t)=O(e^{-c\,t})$ for some c>0, and
 - $|R(t) \rho| \ge |R(0) \rho| \exp[\gamma S^2(0)(e^{-ct} 1)]$ for some $c, \gamma > 0$, implying that the larger the intitial genetic variance, the closer the trait mean can come to the optimum.

Precise Results- The Spaces B_i

•
$$B_0 = \left\{\psi \text{ measurable on } [0,1] : \langle\psi,\psi\rangle_{B_0}^2 < \infty\right\}$$
 where
 $\langle\varphi,\psi\rangle_{B_0} = \int_0^1 x(1-x)\varphi\psi \,dx.$
• $B_1 = \left\{\psi \in B_0 : \langle\psi,\psi\rangle_{B_1}^2 < \infty\right\}$ where
 $\langle\varphi,\psi\rangle_{B_1} = \langle\varphi,\psi\rangle_{B_0} + \int_0^1 [x(1-x)\varphi]_x [x(1-x)\psi]_x \,dx.$
• $B_2 = \left\{\psi \in B_1 : \langle\psi,\psi\rangle_{B_2}^2 < \infty\right\}$ where
 $\langle\varphi,\psi\rangle_{B_2} = \langle\varphi,\psi\rangle_{B_1} + \int_0^1 x(1-x)[x(1-x)\varphi]_{xx} \cdot [x(1-x)\psi]_{xx} \,dx.$

Precise Results- Hypotheses

- $\bullet \ \varphi_0 \in B_1$
- $\phi_0(x) \ge 0$ for almost every x
- $R_0(0)$ and $R_1(0)$ are given.

•
$$0 \leqslant \mu < \frac{15}{98}\sqrt{\frac{5}{11}} \approx 0.10319.$$

• There exists a function

$$\begin{split} \varphi \in C([0,T);B_1) \cap L_2(0,T;B_2) \\ & \cap C_{\text{loc}}((0,1)\times[0,T)) \cap C^{\alpha}([0,T);L_p(0,1)) \end{split}$$

for any $1 \leq p < 2$ and any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$.

• There exist functions $R_0(t), R_1(t) \in C^{\beta}[0,T)$ for any $0 < \beta < \frac{1}{2}$.

Define

$$R(t) = \int_0^1 (x - \frac{1}{2}) \phi(x, t) \, dx + R_0(t) + R_1(t).$$

Then $R \in C^1[0, T)$.

Precise Results- Existence

• Then

$$\varphi_t = -[x(1-x)m\varphi]_x - [\mu(1-2x)\varphi]_x + \frac{1}{2}[x(1-x)\varphi]_{xx}$$

as elements of $L_2(0, T; B_0)$.

• Further,

$$\lim_{t\downarrow 0}\varphi(x,t)=\varphi_0(x)$$

with the limit taken strongly in B_1 .

Precise Results- Existence

Set

$$\nu(x,t) = \int_0^t \left\{ -\mu(1-2x)\varphi(x,s) + \frac{1}{2}[x(1-x)\varphi(x,s)]_x \right\} ds$$

Then $\nu\in C^{\alpha}([0,T);C^{1-\frac{1}{p}}[0,1])$ for any $1\leqslant p<2$ and any $0<\alpha<\frac{1}{p}-\frac{1}{2}.$ Further

$$R_0(t)=R_0(0)-\tfrac{1}{4}\nu(0,t),\qquad R_1(t)=R_1(0)-\tfrac{1}{4}\nu(1,t).$$

 $\bullet\,$ Notice that, formally differentiating, and substituting for ν we find

$$\begin{split} R_0'(t) &= \frac{1}{2} \left[+\mu \varphi - \frac{1}{2} [x(1-x)\varphi]_x \right]_{x=0^+} \\ R_1'(t) &= \frac{1}{2} \left[-\mu \varphi - \frac{1}{2} [x(1-x)\varphi]_x \right]_{x=1^-} \end{split}$$

Proof Sketch- Existence

- Theory of the spaces B₀, B₁, and B₂.
- Fix and freeze $\tilde{\varphi}$, \tilde{R}_0 and \tilde{R}_1 so that $|\tilde{R}(t)| < \gamma$.
- Energy estimates for ϕ .
- Energy estimates for γ .
- Maximum principle for ϕ .
- Fixed point argument

The space B₁

• If
$$\phi \in B_1$$
, then $x(1-x)\phi \in \overset{\circ}{W}{}_2^1(0,1) \hookrightarrow C^{\frac{1}{2}}[0,1]$ and

$$\begin{aligned} |x_1(1-x_1)\varphi(x_1) - x_2(1-x_2)\varphi(x_2)| \\ \leqslant |x_2 - x_1|^{\frac{1}{2}} \left(\int_0^1 [x(1-x)\varphi(x)]_x^2 \ dx \right)^{\frac{1}{2}} \end{aligned}$$

 Proof follows from the fact that for all ε > 0, so that meas{x ∈ (0, k) : |x(1 − x)φ(x)| ≥ ε} ≤ ¹/₃k for almost all sufficiently small k.

The space B_1 - simple consequences:

• Let $\varphi \in B_1$; then

$$\sup_{x \in [0,1]} x(1-x)\varphi^2(x) \leqslant 2 \int_0^1 [x(1-x)\varphi]_x^2 dx$$
$$|\varphi(x)| \leqslant 2 \max\left(\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{1-x}}\right) \|\varphi\|_{B_1}.$$

• For any
$$1 \leq p < 2$$
,

 $B_1 \hookrightarrow L_p$

and there exists a constant C = C(p) so that if $\varphi \in B_1$ then

$$\left\| \varphi \right\|_{L_{p}} \leqslant C \left\| \varphi \right\|_{B_{1}}.$$

•
$$C_0^{\infty}(0, 1)$$
 is dense in B_1 .

The space B₂

• Let $\phi \in B_2$; then

$$\int_{0}^{1} x(1-x)\phi^{2} dx \leq 2\int_{0}^{1} x(1-x)[x(1-x)\phi]_{xx}^{2} dx,$$
$$\int_{0}^{1} [x(1-x)\phi]_{x}^{2} \leq 8\int_{0}^{1} x(1-x)[x(1-x)\phi]_{xx}^{2} dx.$$

- We have the embedding $\mathrm{B}_2 \hookrightarrow C^{\frac{3}{2}}_{\text{loc}}(0,1)$
- $C^{\infty}[0, 1]$ is dense in B_2 .
- Proofs follow by using the Green's function for $\psi'' = 0$, $\psi(0) = \psi(1) = 0$ and the representation $\varphi(x) = \frac{1}{x(1-x)} \int_0^1 G(x,y) [y(1-y)\varphi]_{yy} dy.$

Eigenvalues

There exists a sequence of eigenvalues λ_k and eigenfunctions $\varphi_k \in B_2$ so that:

- $-[x(1-x)\varphi_k]'' = \lambda_k \varphi_k$,
- The set $\{\varphi_k\}_{k=1}^{\infty}$ is an orthonormal basis for B_0 , and
- $\bullet \ \, \mbox{The set} \, \{\varphi_k\}_{k=1}^\infty \ \, \mbox{forms a basis for B_1.}$

In fact,

$$\begin{split} \lambda_k &= (k+1)(k+2) \\ \varphi_k(x) &= \sqrt{\frac{8(k+3/2)}{(k+1)(k+2)}} \, C_k^{(3/2)}(2x-1) \end{split}$$

where $C_k^{(3/2)}$ are the Gegenbauer polynomials.

First Limiting Embedding

• We have the embedding $B_1 \hookrightarrow L_2(0,1)$; in particular there is an absolute constant $K_1 \leqslant 2\sqrt[4]{10}$ so that

$$\|f\|_{L_2(0,1)} \leq K_1 \left(\int_0^1 [x(1-x)f(x)]_x^2 dx \right)^{\frac{1}{2}}$$

for any $f \in B_1$.

- To prove this, we use some essentially Fourier series techniques.
 - Indeed, to begin we write

$$f=\sum_{j=1}^{\infty}\alpha_j\varphi_j(x)$$

with convergence in B1 where

$$\alpha_{j}=\left\langle f,\varphi_{j}\right\rangle _{B_{0}}.$$

First Limiting Embedding

Now

$$\begin{split} \int_{0}^{1} [x(1-x)f(x)]_{x}^{2} \, dx &= \sum_{j,k} \alpha_{j} \alpha_{k} \int_{0}^{1} [x(1-x)\varphi_{j}]_{x} [x(1-x)\varphi_{k}]_{x} \, dx \\ &= \sum_{k} \lambda_{k} \alpha_{k}^{2} \\ &= \sum_{k} (k+1)(k+2)\alpha_{k}^{2} \end{split}$$

• On the other hand

$$\|f\|_{L_2}^2 = \sum_{j,k} |\alpha_j \alpha_k| \int_0^1 \varphi_j \varphi_k \ dx \leqslant 2 \sum_{j,k} |\alpha_j \alpha_{j+k}| \int_0^1 \varphi_j \varphi_{j+k} \ dx$$

Mike O'Leary (Towson University)

First Limiting Embedding

 \bullet Because the φ_k are known in terms of Gegenbauer polynomials, we can evaluate:

$$\int_{0}^{1} \varphi_{j} \varphi_{j+k} \ dx = \begin{cases} 4 \sqrt{\frac{(j+1)(j+2)(j+3/2)(j+k+3/2)}{(j+k+1)(j+k+2)}} \ k \text{ even} \\ 0 & k \text{ odd.} \end{cases}$$

Thus

$$\left|f\right|_{L_{2}}^{2} \leqslant 8 \sum_{j,k} \left|\alpha_{j}\alpha_{j+2k}\right| \sqrt{\frac{(j+1)(j+2)(j+3/2)(j+2k+3/2)}{(j+2k+1)(j+2k+2)}}$$

• Careful application of Hölder's inequality on the sums together with the fact $\int_0^1 [x(1-x)f(x)]_x^2 dx = \sum_k (k+1)(k+2)\alpha_k^2$ gives us the embedding.

Second Limiting Embedding

• There is an absolute constant $K_2 \leqslant \frac{49}{15} \sqrt{\frac{11}{5}}$ so that

$$\left\|\frac{\mathrm{d}f}{\mathrm{d}x}\right\|_{\mathrm{B}_{0}} \leqslant \mathrm{K}_{2}\left(\int_{0}^{1} x(1-x)[x(1-x)f]_{xx}^{2} \mathrm{d}x\right)^{\frac{1}{2}}$$

for any $f \in B_2$.

- This is proven in essentially the same fashion.
- We start with the fact that

$$\int_0^1 x(1-x) [x(1-x)f]_{xx}^2 dx = \sum_k (k+1)^2 (k+2)^2 \alpha_k^2$$

Second Limiting Embedding

• We also have

$$\begin{split} \left| \frac{df}{dx} \right| \right|_{B_0}^2 &= \sum_j \left\langle \frac{df}{dx}, \phi_j \right\rangle_{B_0}^2 \\ &= \sum_j \left\langle \sum_k \alpha_k \frac{d\phi_k}{dx}, \phi_j \right\rangle_{B_0}^2 \\ &= \sum_{j,k,\ell} |\alpha_k \alpha_\ell| \left\langle \frac{d\phi_k}{dx}, \phi_j \right\rangle_{B_0} \left\langle \frac{d\phi_\ell}{dx}, \phi_j \right\rangle_{B_0} \end{split}$$

Second Limiting Embedding

• Using the fact that the φ_k are known in terms of Gegenbauer polynomials, we evaluate the integrals, and find

$$\begin{split} \left\|\frac{df}{dx}\right\|_{B_0}^2 \leqslant 32 \sum_k \sum_{\ell \geqslant k} \sum_{j < k} |\alpha_k \alpha_\ell| \\ & \sqrt{\frac{(k+3/2)(\ell+3/2)}{(k+1)(k+2)(\ell+1)(\ell+2)}} (j+1)(j+2)(j+3/2). \end{split}$$

• The embedding then follows after another application of Hölder's inequality.

Energy Estimates for ϕ

- Freeze the choice of $\tilde{R}(t)$.
- We have the energy estimates

$$\begin{split} \sup_{0 \leqslant t < T} \int_{0}^{1} x(1-x) \varphi^{2} \, dx &+ \int_{0}^{T} \int_{0}^{1} [x(1-x)\varphi]_{x}^{2} \, dx \, dt \leqslant C \, \|\varphi_{0}\|_{B_{0}}^{2} \\ \sup_{0 \leqslant t < T} \int_{0}^{1} [x(1-x)\varphi]_{x}^{2} \, dx + \int_{0}^{T} \int_{0}^{1} x(1-x) [x(1-x)\varphi]_{xx}^{2} \, dx \, dt \\ &\leqslant C \, \|\varphi_{0}\|_{B_{1}}^{2} \end{split}$$

The constants C depend on max $|\tilde{R}(t)|.$

Energy Estimates for ϕ - Proof sketch

Multiply the equation

$$\varphi_t = -[x(1-x)\tilde{\mathfrak{m}}(t)\varphi]_x - [\mu(1-2x)\varphi]_x + \frac{1}{2}[x(1-x)\varphi]_{xx}$$

by $x(1-x)[x(1-x)\varphi]_{\mathbf{x}\mathbf{x}}$ and integrate; then

$$\begin{split} \frac{1}{2} \frac{d}{dt} \int_{0}^{1} [x(1-x)\phi]_{x}^{2} dx &+ \frac{1}{2} \int_{0}^{1} x(1-x) [x(1-x)\phi]_{xx}^{2} dx \\ &\leqslant \|\tilde{m}\|_{\infty} \left(\int_{0}^{1} [x(1-x)\phi]_{x}^{2} dx \right)^{\frac{1}{2}} \left(\int_{0}^{1} x(1-x) [x(1-x)\phi]_{xx}^{2} dx \right)^{\frac{1}{2}} \\ &+ \mu \left[2 \left(\int_{0}^{1} x(1-x)\phi^{2} dx \right)^{\frac{1}{2}} + \left(\int_{0}^{1} x(1-x) \left(\frac{\partial \phi}{\partial x} \right)^{2} dx \right)^{\frac{1}{2}} \right] \\ &\cdot \left(\int_{0}^{1} x(1-x) [x(1-x)\phi]_{xx}^{2} dx \right)^{\frac{1}{2}} \end{split}$$

Mike O'Leary (Towson University)

Energy Estimates for ϕ

• $\varphi \in C_{\text{loc}}((0,1) \times [0,T));$

 $\bullet \ x^{1-\theta}(1-x)^{1-\theta}\varphi(x,t)\in C\left([0,T);C^{\frac{1}{2}-\theta}[0,1]\right) \text{ for any } 0\leqslant\theta<\tfrac{1}{2};$

- $\bullet \; \sup_{0 \leqslant t < T} \left| \varphi(x,t) \right| \leqslant C \max \left(\frac{1}{\sqrt{x}}, \frac{1}{\sqrt{1-x}} \right) \left\| \varphi_0 \right\|_{B_1}$
- $\bullet \ \sup_{0\leqslant t < T} \left\|\varphi(\cdot,t)\right\|_{L_p(0,1)} \leqslant C_p \left\|\varphi_0\right\|_{B_1} \text{ for } 1\leqslant p\leqslant 2.$
- $\varphi \in C^{1/2}([0,T);B_0)$
- $\phi \in C^{\alpha}([0,T); L_p(0,1))$ for any $1 \leq p < 2$ and any $0 < \alpha < \frac{1}{p} \frac{1}{2}$
- $\phi_t \in L_2(0,T;B_0);$

Energy Estimates for γ

Recall

$$\nu(x,t) = \int_0^t \left\{ -\mu(1-2x)\varphi(x,s) + \tfrac{1}{2}[x(1-x)\varphi(x,s)]_x \right\} \ ds$$

- $\bullet\,$ Then the energy estimates for φ allow us to prove
 - $\bullet \ \nu \in L_{\infty}(0,T;L_{2}(0,1)),$
 - $\bullet \ \nu_t \in L_{\infty}(0,T;L_2(0,1)),$
 - $\nu_{\mathrm{x}} \in C^{\alpha}([0,T);L_p(0,1)),$ and
 - $\nu \in C^{\alpha}([0,T);C^{1-1/p}[0,1])$

for any $1 \leq p \leq 2$ and for any $0 < \alpha < \frac{1}{p} - \frac{1}{2}$.

- In each case, the relevant norm is bounded by $C \| \varphi_0 \|_{B_1}$ for C depending on max $|\tilde{R}(t)|$.
- As a consequence, $\nu(0,t),\nu(1,t)\in C^{\beta}[0,T)$ for any $0<\beta<1/2.$

Maximum Principle

 $\bullet\,$ Maximim Principle: For any $0\leqslant t_1\leqslant t_2 < T$

$$\int_0^1 \varphi^{\pm}(x,t_2) \ dx \leqslant \int_0^1 \varphi^{\pm}(x,t_1) \ dx$$

• The proof follows by using

$$\frac{x(1-x)\varphi^{\pm}}{x(1-x)\varphi^{\pm}+\varepsilon}$$

as a test function on the interval [a,b], then letting $\varepsilon \downarrow 0, \, a \downarrow 0$ and $b \uparrow 1.$

Maximum Principle, Proof

• It is easy to see that

$$\begin{split} \lim_{b\uparrow 1} \lim_{a\downarrow 0} \lim_{\epsilon\downarrow 0} \int_{t_1}^{t_2} \int_a^b \phi_t^{\pm} \frac{x(1-x)\phi^{\pm}}{x(1-x)\phi^{\pm}+\epsilon} \, dx \, dt = \int_0^1 \phi^{\pm}(x,t) \, dx \bigg|_{t=t_1}^{t=t_2} \\ \lim_{b\uparrow 1} \lim_{a\downarrow 0} \lim_{\epsilon\downarrow 0} \int_{t_1}^{t_2} \int_a^b \tilde{m}[x(1-x)\phi^{\pm}]_x \frac{x(1-x)\phi^{\pm}}{x(1-x)\phi^{\pm}+\epsilon} \, dx \, dt = 0. \end{split}$$

• To handle the remaining terms, we first notice that

$$-\mu(1-2x)\phi + \frac{1}{2}[x(1-x)\phi]_x = \frac{1}{2}x^{2\mu}(1-x)^{2\mu}[x^{1-2\mu}(1-x)^{1-2\mu}\phi]_x.$$

Maximum Principle, Proof

• Thus

$$\begin{split} \int_{t_1}^{t_2} \int_a^b \left\{ -\mu(1-2x)\varphi + \frac{1}{2}[x(1-x)\varphi]_x \right\}_x \frac{\pm x(1-x)\varphi^{\pm}}{x(1-x)\varphi^{\pm} + \epsilon} \, dx \, dt \\ &= -\frac{1}{2} \int_{t_1}^{t_2} \int_a^b \frac{\epsilon[x(1-x)\varphi^{\pm}]_x^2}{(x(1-x)\varphi^{\pm} + \epsilon)^2} \, dx \, dt \\ &+ \mu \int_{t_1}^{t_2} \int_a^b \frac{1-2x}{x(1-x)} \frac{\epsilon[x(1-x)\varphi^{\pm}][x(1-x)\varphi^{\pm}]_x}{(x(1-x)\varphi^{\pm} + \epsilon)^2} \, dx \, dt \\ &\pm \frac{1}{2} \int_{t_1}^{t_2} x^{2\mu} (1-x)^{2\mu} \left[x^{1-2\mu} (1-x)^{1-2\mu} \varphi \right]_x \\ &\quad \cdot \frac{x(1-x)\varphi^{\pm}}{x(1-x)\varphi^{\pm} + \epsilon} \, dt \bigg|_{x=a}^{x=b} \end{split}$$

Mike O'Leary (Towson University)

Maximum Principle: Consequences

 $\bullet \ R \in C^1[0,T)$ and

$$|R(t)| \leqslant |R(0)| + \left\|\varphi_0\right\|_{L_1} \left[\frac{1}{2}\mu t + \int_0^t \kappa |\rho - \tilde{R}(t)| \, ds\right]$$

• This follows from the identity

$$R(t_2) - R(t_1) = \int_{t_1}^{t_2} \int_0^1 [\tilde{m}x(1-x) + \mu(x-\frac{1}{2})] \phi \, dx \, dt$$

which follows from the use of $x - \frac{1}{2}$ as a test function.

Fixed Point Argument

• Let $\mathcal{U} = C([0, T); L_1(0, 1)) \times C[0, T) \times C[0, T)$ and consider the function $\mathfrak{F} : \mathcal{U} \to \mathcal{U}$ defined by

 $\mathfrak{F}(\tilde{\varphi}, \tilde{R}_0, \tilde{R}_1) = (\varphi, R_0, R_1)$

where ϕ is the solution of the problem with frozen coefficients with corresponding values of R₀, R₁.

- Our energy estimates and some additional embedding results for the spaces B₁ and B₂ show that \mathfrak{F} is continuous and compact
- The maximum principle shows that the set $\{(\varphi, R_0, R_1) \in \mathcal{U} : (\varphi, R_0, R_1) = \sigma \mathfrak{F}(\varphi, R_0, R_1) \text{ for some } 0 \leqslant \sigma \leqslant 1 \text{ is bounded in } \mathcal{U}.$
- Existence follows from Schaefer's Fixed Point Theorem.